
PHYS4450 Solid State Physics

SAMPLE QUESTIONS FOR DISCUSSION in Week 11 EXERCISE CLASS (3 April 2013)
You may want to think about them before attending exercise class.

Chapter X discussed energy band theories. SQ20 writes the tight-binding result in terms of a tight-binding
Hamiltonian. SQ21 points out that band theory, while with much success in understanding the properties of
solids, has its problems. Understanding the problem of band theories is the beginning of many-body physics.
SQ22 is related to the density of states in anisotropic bands.

SQ20 “Tight-Binding Hamiltonian” (Optional for course contents.) We know that in a 1D simplest
tight-binding band that takes into account of the on-site energy ϵ0 and the nearest neighboring hoping,
it has the form of

E(k) = ϵ0 + 2t cos(ka)

where a is the lattice constant.

Recall that this expression gives the energy eigenvalues. The Schrödinger equation is Ĥψ = Eψ. In
some books, the authors write the Hamiltonian in terms of the basis set of atomic orbitals centered at
different locations Ri. Explicitly, one can use the notation |i⟩ for an atomic orbital centered at the site
Ri (or simply i), i.e.,

< x|i >= χ(x−Ri)

where χ(x−Ri) is the wavefunction of the atomic orbital centered at Ri. In this way, the Hamiltonian
takes on the form in 1D systems:

Ĥ =
∑
i

|i⟩ϵ0⟨i|+
∑
i

|i⟩t⟨i+ 1|

where the second term implied only nearest neighboring hopping is allowed. TA: By forming a Block
Sum over the set of atomic orbitals |i⟩, show that the Hamiltonian really gives the band E(k). Note
that I have not been very careful about the proper form of the second term. For example, if I want to
write it as

∑
i,j(n.n.) |i⟩t⟨j|, where the sums are over i and j but they must be nearest neighbors, will

it just be the same?

Remark: In general, the tight-binding Hamiltonian can be written in the form

Ĥ =
∑
i

|i⟩ϵi⟨i|+
∑
i,j

|i⟩tij⟨j|

where ϵi gives the on-site energy (energy of atomic level) of the atom at location Ri and tij gives the
hopping integral between the atoms at locations Ri and Rj . This Hamiltonian can now be used to
study alloys, e.g., A0.8B0.2 so that one can generate a configuration randomly according to the 80%
and 20% concentrations and then write down the Hamiltonian accordingly. TA: I have not been careful
to include a term of the complex conjugate of the second term. You may check textbooks or literature
on the proper way to write it.

SQ21 (A Problem with Band Theory.) We have discussed in some length the Energy Band Theory.
According to Band Theory (see Chapter XI), a material with partially filled band is a conductor.
Think about sodium. The outermost 3s electrons fill (half-fill) partially a band. Indeed, sodium is a
metal. However, looking closer, the same prediction holds even the sodium atoms are well separated
(e.g. separated by 1 m). Would you expect such a system to be a metal? What’s wrong? [This leads
to the consideration of on-site Coulomb interaction and its energy U . There is then a competition
between t (in tight-binding model that characterizes the hopping of electrons) and U , which is the
main idea in the Hubbard model (which is the beginning of many-body physics).
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SQ22 Related to Problem 5.3. It should not be surprising by now to know that in some cases, a band
may be anisotropic, i.e., as one goes from k = 0 in different directions in the 1st BZ, the curvature can
be different. Here is an example. Consider a two-dimensional anisotropic band of the form

ϵ(k) = h̄2[
k2x
2m1

+
k2y
2m2

],

where in general m1 ̸= m2. Discuss how can one obtain the density of states g(ϵ) in this 2D system?
When m1 = m2, what is the result? Does the result reduce to the known result for an isotropic 2D
free electron band?
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